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COMMENT 

The effect of randomness on the critical behaviour 
of kinetic gelation 

N Bahadur, D P Landau and H J Herrmannt 
Center for Simulational Physics, University of Georgia, Athens, C A  30602, USA 

Received 15 September 1987 

Abstract. The behaviour of a three-dimensional kinetic gelation model with regularly placed 
initiators is determined from Monte Carlo simulations. We find marked differences with 
the behaviour observed when initiators are placed on the lattice randomly. We also look 
at the effect of introducing repulsion between initiators. 

1. Introduction 

Kinetic gelation [ 1-51 is a model for addition polymerisation which has been studied 
extensively via computer simulation. Growth occurs by the addition of bonds through 
modified random walks (kinetic growth walks) which eventually join to form a gel. 
In all of our previous studies we have placed the starting points for these random 
walks (initiators) at random locations on the lattice. It has been shown [ 6 ]  that for 
the problem of random walks with traps the resulting probability of hitting a trap is 
strongly dependent on whether the distribution of traps is regular or random. As we 
shall show shortly, our model is similar except that we have time reversal: our initiators 
play the role of the traps. It is, therefore, interesting to determine whether or not the 
critical behaviour of the kinetic gelation model is dependent upon whether the initiators 
are placed randomly or periodically. We shall also use this model to study growth in 
a system where the initiators are anionic or cationic rather than radicals. The result 
of this is that the initiators are charged and thus repel each other [7]. As a first step 
towards understanding what effects this produces we shall consider cases where the 
initiators are subject to hard-core repulsion. A particular limiting case occurs when 
the initial spacing between initiators is equal to the minimum distance allowed by the 
hard-core repulsion; growth can then occur only if all initiators grow bonds simul- 
taneously and in the same direction. As a result all clusters are the same size at all 
times and they all join together at a single time to form a gel in a first-order transition. 

2. Model and method 

We have considered L x L x L simple cubic lattices with periodic boundary conditions 
in which each site contains a four-functional monomer and initiators are placed on 
sites at regular intervals with concentration c , .  Growth begins with a randomly chosen 
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initiator attempting to form a bond to a nearest neighbour, transferring the ‘active 
centre’ to that site in the process. (This model is explained in detail in reference [ 2 ] . )  
The number of bonds grown up  to a given time can be determined from the conversion 
factor p (which is simply the number of bonds formed divided by 3 L3). As the random 
walks emanating from each initiator grow, they form clusters of increasing size due 
to the joining of individual walks. The effect of the hard-core repulsion between the 
active centres is included by defining a distance of minimum approach A and checking 
at each growth step to ensure that the movement of an  active centre does not bring it 
closer to any of the other active centres than A. This is a very time-consuming task 
and hence the statistics which we could obtain for A greater than zero were not as 
great as for the case of no repulsion, i.e. A = O .  The fraction of the lattice which is 
occupied by the largest cluster is called the gel fraction and the second moment of the 
cluster size distribution n, is called the susceptibility: 

x = 2 s’n, (1 )  

where s is the size of a cluster, n, is the number of clusters of size s divided by L3, 
and the sum excludes the largest cluster. As p approaches the gel point ,y is expected 
to diverge as 

x = c , p  ( 2 )  
where C- is the amplitude below p c ,  C, is the amplitude above p c ,  the ratio C-/C+ = R 
and & = ( p  - p , ) / p c  if p > p c  and & = ( p c - p ) / p c  if p <pc.  Because finite-size effects are 
so important for the lattice sizes which we can study, we shall extract the infinite lattice 
critical behaviour using finite-size scaling. In the critical region the susceptibility for 
the finite lattice is given by 

(3) 

where f ( x )  + x-’ as x + 00 and x = &L””  if the correct infinite-lattice singularity is to 
be obtained. In order to properly test finite-size scaling it is important that we be able 
to analyse data over a wide range of the finite-size scaling variable x. If corrections 
to scaling are important the analysis of finite-size effects will be limited by deviations 
from the simple asymptotic power laws. To reduce such effects we analysed the 
susceptibility using the following form: 

xL-YI” - - f ( x )  

x = xo(1 + D h W )  (4) 

xo= c*&-’ ( 5 )  

where 

is the dominant singularity and D and w are the amplitude and  exponent of the 
lowest-order correction to scaling term. Equation (4) can be rewritten as 

( 6 )  
Thus by estimating C, and y we can use (5) in ( 6 )  to extract values of D and w from 
the data. These values may then be used to eliminate the correction from the data, i.e. 

(7) 
where xmeaS is the value of x measured by the simulation. x’ should then be described 
by ( 5 )  for the infinite lattice, and  finite-lattice data should obey (3) over a wider range 
of x than before. 

ln (x /xo  - 1) = In D + w In c. 

x’ = Xmeas  - Dxo&” 
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For the gel fraction G, i.e. the fraction of sites that belong to the largest cluster, a 
similar correction to scaling analysis and subsequent finite-size scaling can be performed 
and one obtains 

where g is a scaling function, E a correction to scaling amplitude and  p is the critical 
exponent for the gel fraction. 

3. Results 

All of the qualitative features of the data for periodic initiators are the same as for 
random [2,3] initiator placement; we shall, therefore, not show raw data but shall go 
directly to the analysis. In figure 1 we show a finite-size scaling plot for the susceptibility 
for both cases with cI = 3 x In addition to the difference in p c ,  the ratio R = 9.5 
is much larger for regular initiator placement. This value for R is close to that for 
standard percolation ( R  = 10) and substantially greater than that for kinetic gelation 
with random initiators [3] ( R  = 2.6) and cI = 3 x The critical exponents themselves 
appear to be about the same in both cases. 
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Figure 1. Finite-size scaling plot for the susceptibility for ( a )  regular placement ( p c  = 0.046) 
and  ( b j  random placement ( p c  = 0.040) of initiators with c ,  = 3 X y = 1.8, v = 0.8. 
L=3O(Cj ,  6 0 ( 0 ) ,  90(A).  

In figure 2 we also show finite-size scaling plots for the gel fraction and for the 
susceptibility for regular initiators where the corrections to scaling have been taken 
into account as described in ( 7 ) .  There is a small systematic shift in critical exponents 
p and y to smaller values compared to those obtained with random initiators. However, 
because the difference is within our error bars we cannot say for certain that a real 
difference exists. Finite-size scaling plots for cI = 3 x with A = 5.0 and  A = 8.0 are 
shown in figures 3 and  4. For this value of cI the spacing between initiators is ten 
lattice spacings. Apart from the shift of p c  to higher values with increasing A, there 
is no apparent change in the critical exponents or  in the critical amplitude ratio R as 
compared to the results for A = 0. Therefore we see no indication of crossover behaviour 
associated with the eventual first-order transition which would occur for A = 10. ( In  
this case all initiators would have to form a bond in the same direction at the same 
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Figure 2. Finite-size scaling plots of periodic initiator placement with cI = 3 x and 
with corrections to scaling removed according to equations (7)  and (8),  w = 1.6, D=O.3, 
E = -0.5. ( a )  Susceptibility. ( b )  Gel fraction (no repulsion). p c  = 0.046, y = 1.8, p = 0.35, 
v = 0.8. 

Figure 3. Finite-size scaling plots for periodic initiator placement with cI = 3 x and 
repulsion distance A = 5 .  Corrections to scaling have been removed according to equations 
(7)  and (8). w = 1.6, D=O.3, E = -0.5. ( a )  Susceptibility. ( b )  Gel fraction. p,=O.O54, 
y = 1.75, p = 0.35, Y = 0.8. 

time since the repulsion would prevent any initiator from moving individually. The 
result is that all clusters would always be the same size and when a gel forms all 
clusters join simultaneously to give a gel fraction of unity.) It is perhaps worthwhile 
to point out that since we only allow growth of one bond at a time, it is not possible 
for us to observe the first-order transition directly. 

4. Conclusions 

From a comparison of the results for the cases of periodic and random initiation we 
conclude that the randomness of the distribution of initiators is crucial. It is possible 
that this effect is a more general property of percolation on a random lattice [8] and 
that the change in amplitude ratio (and possibly exponents) is due  to some sort of 
singular behaviour such as the one found by Griffiths [9]. If this is true, this result is 
particularly interesting also because for percolation a is less than 0. Further work in 
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Figure 4. Finite-size scaling plots for periodic initiator placement with c, = 3 x and 
repulsion distance A = 8. Corrections to scaling have been removed according to equations 
(7) and (8), w = 1.6, D=0.3 ,  E =0.5. ( a )  Susceptibility. ( 6 )  Gel fraction. p,=0.065, 
y = 1.7, p = 0.35, U = 0.8. 

this direction would be most welcome. In contrast there is no apparent change in the 
critical behaviour when hard-core repulsion between the active centres is added. 
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